Background

Enteral feeding intolerance, a common type of gastrointestinal dysfunction leading to underfeeding, is associated with increased mortality. Tracheal pepsin A, an indicator of microaspiration, was found in 39% of patients within 24 hours of enteral feeding. Tracheal pepsin A is a potential biomarker of enteral feeding intolerance.

Objective

To identify predictors of microaspiration (tracheal or oral pepsin A). It was hypothesized that variables predicting the presence of tracheal pepsin A might be similar to predictors of enteral feeding intolerance.

Methods

In this secondary analysis, machine learning models were fit for 283 adults receiving mechanical ventilation who had tracheal and oral aspirates obtained every 12 hours for up to 14 days. Pepsin A levels were measured using the proteolytic enzyme assay method, and values of 6.25 ng/mL or higher were classified as indicating microaspiration. Demographics, comorbidities, and variables associated with enteral feeding were analyzed with 3 machine learning models—random forest, XGBoost, and support vector machines with recursive feature elimination—using 5-fold cross-validation tuning.

Results

Random forest for tracheal pepsin A was the best-performing model (area under the curve, 0.844 [95% CI, 0.792-0.897]; accuracy, 87.55%). The top 20 predictors of tracheal pepsin A were identified.

Conclusion

Four predictor variables for tracheal pepsin A (microaspiration) are also reported predictors of enteral feeding intolerance, supporting the exploration of tracheal pepsin A as a potential biomarker of enteral feeding intolerance. Identification of predictor variables using machine learning models may facilitate treatment of patients at risk for enteral feeding intolerance.

You do not currently have access to this content.